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The next counterexample shows that (2.7) is false; and it seems
to us that this invalidates R(8%, P*) as a reasonable procedure
since the infimum of P[CS] 1is not controlled even asymptotically.
The expedient of the authors of the latest version of [T7] of
considering only that part of the parameter space where

-1
B[k] - 9[1] = 0(n"2) is difficult tc translate into practice.
Does it mean that one should use R{§*, P*¥; only when one is

inced that © 6 o(n%)?
cons1ince a [k] - [l] - n .

Counterexample 2.

Consider the logistic cdf F(x) = (1 + e-x)'1 and let
o(5*) € D(3*) be a sequence of 6-values depending on &% as

f'ollovws:

(2.8) e = ...

1 -0

6. . =0, 6

= ¥*
0’ Yk-t k-t+l = 97

Y

o =6 =28

k-t42 ~ """ k"0’

where eo is & fixed positive constant and §¥* < 60.

We now prove the following assertion: For each k > 3 and each

t <k, there exists a value of P¥, say P%, (:)'l < P¥ <1, such that




IS

ety

PR
JEr—

P
vt it

In problem II the experimenter sets only the P*-value and requires
that, with probebility greater P*, the selected subset contains the
index of the largest 6-value. This problem might arise in screeaing
drugs as cancer cures; one would want to reduce the number of drugs
which are to be submitted to further tests but at the same time be
reasonably sure of not eliminating any drug which is a potential cure.

In this paper we examine certain procedures which have been claimed
elsewhere to be solutions to these problems. We show by means of
specific examples that these procedures are in fact not solutions and

should be used with caution if they are used at all.
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On Selection Procedures Based on Ranks:

Counterexamples Concerning Least Favorable Configurations

By
M. Haseeb Rizvi and George G. Woodworth

=

Insroduction

Let ﬂl’ n2, ces g ﬂk denote k > 2 univariate populations

differing only in location; that is, an observation Ici drawn from
ny has cumulative distribution function (ecdf) F(x - Gi) where F
is a known continuous cdf with square integrable density f but the
location parameter vector ¢ = (61, cee Gk) is ungnown. Let the
ordered values of the locat&on parameters be denoted by

9[ < v

<6

1} = %rxy

2]

Selecting the t best populations.

The decision problem here is to select the populations corresponding
to the t < k 1largest 6-values. The goal of the decision maker is
to find a procedure, say R, and a sample size n such that the
probebility of & correct selection using rule R, P[CS|R,8], has

the property that

(1.1) inf plcs|R,6] > P,
6 € D(s*) T
K

where

(1.2) D(8*) =

(65 Orate1] ™ O[u-t) 2 8D

:

and (:’)-l < P¥ <Ll and .B¥ >0 are preassigned constants.




Selecting a subset containing the best population

The decision problem here is to select & subset of the k
The

populations containing the population associated with e[k!

goal of the decision maker is to find for fixed n and preassigned

P* < 1 a procedure, say R/, such that

inf P[CS|R’, 8] > P*.
it

(1.3)
6
2.

We consider two procedures (proposed elsewhere) based on rank

sums and show by counterexamples in sections 2 and 3 that they do

not satisfy (1.1) (or (1.3)).
A procedure based on rank sums for selecting the t best populations

2.
. , n} be k samples each of

Let D%J;ﬂi =1, ... , k, J =1,

is to be determined by (1.1)), X., being the j—

13

size n (n
observation from ni, and let RiJ be the rank of ‘xij among all the
observations.
Define the rank sums
(2.1) Tyn = 2 ZR yi=1, ... , k
n J=1
n n k 1
(2.2) = 2 Y Zx(x >X ’*H'
n J=1 s=1 r=1

the event in parentheses.

is the indicator of
is as follows:

where I(-)

The propesed selection rule,
i) Drawv samples of size n from each population and

call it R(n),

compute Tin for 1i=1, ., k.
.in-values,

1i) Select the t populations having the largest T

resolving ties by the obvious randomization
2
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The problem now is to find a value n = n (8%, P* k, t, F) such
that R(n) satisfies (1.1).

In solving this problem a cruciael role is played by the slippage

configuration ?O:

(2'5) 9[1] F e = e[k-t] = 6[k-t+l] - 5* T oss. = e[k] - 5*.

Many selection rules, for example the rule based on the sample means,
have the property that the infimum in (1.1) is attained when 6 is in
the slippage configuration; in other words for many rules the slippage
configuration is the least favorable configuration. For such rules it
is a relatively easy task to find the appropriate value of n (see,
for instance, Example 1 of [1]). The following counterexample, kindly
communicated to the authors by E. L. Lehmann, shows that for the rank-

sum rule R{(n) the slippage configuration is not least favorable.

Counterexample 1 (E. L. Lehmann).

Let k=3, t=1 and let F be a continuous cdf which places
probability q and p =1 - q respectively on the intervals (0, &)
and (1, 1 + €); € < 1/3 is a constant. Let &% = ¢ and consider two

parameter values:

QO = (0) 0, 5*) ) Ql = (0) 5*: 25*)°

Tor n = 2, we show that
(2.4) P(cs|R(2), @,] > Pcs|Rr(2), &;]).

Since 6, 1is in the slippage configuration and &, 8, € D(z*),
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defined by (1.2), this provides the required counterexanmpile.

Proof: The supports of the distributions of the populations under the

two parameter configurations can be depicted as shown in Figure 1.

6@
n

0 8% 25% 3% 1 1+6%  1+2p% 1+%p*

Figure 1: Supports of Distributions.

Let Bi be 0, 1 or 2 according as 0O, 1 or 2 observations

from ni are in the upper interval of the support of its distribution,

= B
B (Bl’

o BE) and b = (bl, b, b5) is a realization of B. Clearly

p[g = E]g] = b, /P " for g =6y or 91.

~

R = (Rij: i=1,2, 3 J=1, 2} 1is the vector of ranks and

r = (riJ] is a realization of R. Given R = r a correct selection
(selection of ﬂ5) occurs with probability 1 if Tyt Tap >

max(r21 *Typy Tyt rle), with probability 4 if T5) ¥ ey =Ty

+ I >ry, + ry, or r31 + rje =Ty + T > Toy + Thos and with
probability 1/5 if r}l + r52 = r21 + r22 = rll + r12' The conditional

probability that R =1r given B =1 1is easy to compute, for example

e,
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P[R=(1, 2 3,45 6) | B=(0,0,0), 6] =71/48 1
1/8 i

]
=

Thus, for each of the 27 values of b one can determine the conditional

probability of a correct selection given B = b under 90

For most of the b the probability is the same under 60 and 6

and gl'

1 but

in the six cases listed in Table 1 there is a difference.

Table 1
b (B - b] g[csm =% g]
% &
(0, 1, 0) 2pq’ 5/6 /2
(1,0,0 |  2pa° 5/6 1
(1, 1, 0) bpiet 1/6 0
(1, 2, 1) ll»phqe 1/2 0
(2, 1, 1) hptq? 1/2 1
(2, 2, 1) 2p’q 1/9 0

P[cs|R(2), 6,1 - Fics|R(2), 6,]

2 Ly 2
=%pq5+—p2 +-9-p5q>0,

(S

which establishes counterexample 1.

The possibility still remains that the slippage configuration is
asymptotically (6% — 0) least favorable; an asymptotic solution based
on this assumption has been claimed by varicus authors ([4], [7] and [8]).
This solution is as follows:

Let A(P*; k, t) be the solution of

N




(2.5) [oR"Y(x + A)ad¥(x) = P*

where ¢ is the standerd normal cdf, and define n(B*, P*; k, t, F)

to be the smallest integer larger than
2 2 2
(2.6) AT(P*; k, t) / 12[e*/f%(x)ax]",

where f 1is the derivative of F. The selection rule

R(s*, P*; k, t, F) = R(6%, P*) 1is the rule R(n) with n set equal
to n(8*, P*; k, t, F). The natural inclination to call R(5*, P*)
"distribution-free" must be resisted; obvicusly one needs to know F

to carry out this procedure.

If 6 1is in the slippage configuration (2.3), then it can be

shown ([7] or [8]) that
1im P[CS|R(z*, P*), eO} = p*
5*= 0

The authors of [4] and [8] have incorrectly asserted that the slippage
configuration is least favorable (this was also asserted in earlier

versions of [7]) from which it would follow that R(8*, P*) satisfies
(1.1) asymptotically as B%*- 0; i.e. for fixed P*, it has been
claimed that

(2.7) lim inf  P{[CS|R(8*, P*), 6] = P*.
% 0 6¢D(B*) ~

Y
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The next counterexample shows that (2.7) is false; and it seems

to us that this invalidates R(5%, P*) as a reasonable procedure

since the infimum of P[CS] 1is not controlled even asymptotically.

The expedient of the authors of the latest version of [T] of

Lf considering only that part of the parameter space where

-1
G[k] - 9[]] = 0(n 2) is difficult tc translate into practice.

s Does it mean that one should use R(5*, P*} only when one is

1
consinced that e[k] - 6[1] = o(n 2)?

|-

Counterexample 2.
4 1
2 Consider the logistic cdf F(x) = (L + e X)™ and let
B
{Z o(s*) € D(8*) be a sequence of 6-values depending on B&* as
§ follovs:
8 = see = = = = = B¥
: (2.8) % Ogt-1 = 07 kot = 9 Fkpn = B
ek—t+2 = eee = Gk = Go,
g where 6, 1is & fixed positive constant and &* < 6.
: We now prove the following assertion: For each k > 3 and each

t < k, there exists a value of P¥, say P, ({lf)-l < P%¥ <1, such that




(2.9) 1im P[CS|R(8*, P*), o6(s*)] < P%,
5% 0 R °

which clearly contradicts (2.7).

Lerma 1.
} (2.10) 1im P[CS|R(5%*, P*}, 6(5¥)]
- 3%¥- 0 ~
i
< ¢(2'% A*o(6,)),
where
(2.11) A* = A(P*; k, t),
(.12)  ole,) - 37, (2F - aF/UE aF - (JH, ar)?)
0 0 0
and

(2.13) Hy (x) = K (k - t - 1)F(x + 6g) *+ 2F(x) + (t - 1)F(x - 6)1.

0
! Proof: Notice first that if 91 < 92 ... £ Gk, then
: (2.14) P[CS|R(s*, P*), 6]

< Pl max T, < min T, |68]
1<i<k-t in K-t<j<k Jnl..

2 P[Tk-t+l,n " Teg,n 20 81,




Wwhere n is the smallest integer grester than (2.6). From (2.2) one

has, with probability one when 6 = 6(8%),

T - T

k-t+1,n k-t,n

n n
1
=5 L X I a5 > Keg,o)

n- j=1 s=1

n

(2.15) =1

(=l ] o

= N Tl

3=1 ifk-t,k-t+1

* 'fgt [I(xk-t+l,j > Xyg)

i
or k-t+1

- I gy > XD
Pz, , - %) - F(E, )

n
JZ&(2F(Xk_t,j -g*) +(k -t - l)chk-t,j+ eo)
+(t - l)F(xk-t,j - GO)}

n
jz:l(EF(xk-tﬂ,J) t(k-t - l)F%-tﬂ,,j * 90)

- DFE g4, 5 - 8

- 2JF(x + 8*)aF(x) + (k-t-1)[F(x +60)d(F(x-8*)-F(x))

+ (t - 1)[F(x - eo)d(F(x - 5%) - F(x))

+ en(eo} 5*)’

where E si(eo, 5*) < ¢/ n° and C 1is an absolute constant. Note that

(2.15) is ebtained by U-statistic arguments in imitation of, say, the

proof of Theorem 5.6, p. 229 of [3].

g
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Let
(2.16) W= n%(T -T

routine calculaﬁion yields
B = n?(2[F(x + s¥)aF(x) - 1
*(k -t -1) f(F(x - 6,) - F(x-6,-5%))ar(x)

£ (6= 1) R+ 6) - Flx+6,-5%))ar(x)).

|

)|

1
By (2.6) and (2.11) one has n‘s*'aA*[lszg]"‘5 as &% 0; thus,

by Olshen's Lemma (p. 1766 of [5])

(2'17) 1im B4 = A% {2/f2(x)dx + (k -t - l)ff(x - eo)f(x)dx

s*=0 °  W1z2/f°

+ (t - 1)ff(x + Go)f(x)dx}A

Also

(2.18) Lin Ver(v,) = 2k°(JiC aF - (fu, aF)?},
5% 0 0 0

vhere H, 1is defined by (2.13).
0

If we set F(x) = (1 + e'x)'l

, then f(x) = F(x)(1 - F(x)) and
N ff2 = 1/6, so that (2.17) becomes, after integrating by parts,
1
1im BW = 52A*ka6 (2F - 1)aF.
5% 0O n 0
Since (2.15) is asymptotica}ly normal by Liapunov's theorem, it
follows that
1im P[CS|R(8*, P*), 6(5%)]
8% 0 N

= < 1iim PIT -T > 0|6(p%*
= 8% 0 [ k-t+1l,n k-t,n = l~( )

10
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Lim F(W_ - B)/(Var(v )2 > -5 /(var(v )2 |o(s%)]
5% 0 ~

it

o(22%o(8,)),

which proves Lemme 1.

Remark. For 6, > 0, H, 1is clearly not a linear function of F and,

0 90
since He and F are both monotone increasing, we have
0
(2.19) 0 < p(8,) < 1.
Lemma 2.
For any k and t
2 -1
(2.20) lim 22 @ ~(P*)/A% = 1,
P~ 1

where A* = A(P*; k, t) and A is defined by (2.5).

Proof: Let Z,, ... , 2, be independent normal (0,1) random

variables. Then,

1-p% =1 - [o5F(x + a%)ao®(x)

P[ max z, > min Z, + A*]
1<i<k-t K-t<j<k 9

i}

Pl u (2

$ > Z. + A*})
1<i <k-t<<k !

IA

- *
t(k t)P[z1 >Z, + A ]

t(k - t) [1 - ¢(2'% A%)].

Also clearly
1 -P*>[1 - ¢(2’% A%)].

13
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Lenma 2 now is a consequence of the following easily verifiable fact
-1 1
lim ¢ (u)/[- 2 log(l - u)l2 =1
u-—1
and of the well known approximation to Miils' ratio.
Counterexample 2 now follows from (2.10), {2.19) and (2.20) by

selecting Pg large enough so that

27a(p%; k, £)/071(P8) < 1/p(8,).

A remark on the scale parameter case.

Suppose %, has cdf F(x/ci) where F(x) = 0 for x<0, F is

i
known, and © = (ol, cee ck) is unknown (if F(x) £ 0 for x <0

then replace x by |[x|). R(n), with JXij replaced by =xij, could
be used to select the t smallest o-values; in [6] it is asserted

that, for any constant 6% > 1, P[CS|R(n), ¢] attains its minimum,

subject to the condition

2 2 ‘
°[t+1]/°[t] > 6% > 1,

when
2 2 2 2
6%g’ = ... = @¥%a[. = 0 = eee = Opr. 10
{1] [£] [t+1] (k]
That this is false, even asymptotically (6%- 1), follows from
Counterexample 2 by considering the random variable Y =-log(X), since
if X has cdf F(x/o) then Y has odf 1-F(exp(y - y)), where , =-ogy,

and Y has the same rank as in

13 3




3. A procedure based on rank.sums forAselegtggg a subset containing

the best population.

The authors of [2] propose the following procedure, call it R’(n):

Put ni in the selected subset iff

J
where
-1 -1
(3.1) ¢oc s (12n) 72 xa* + o(n )
and A¥ = A(P¥; k, 1), defined by (2.5). We shall show that the
slippage configuration: 6[11 = 9[2] = e = e[k] is not least

favorable by proving the following:

Counterexample 3.

Let 91 denote the configuration

68, = ... =8 =+l,9

k-2 6, =0

k-1 = “k

and let 6, denote the slippage configuration for this problem:

20
) =6,= ... = 6. If F(x) is as iu (3.7) and k > 3, then
(3.2) lim P{CS|R/(n), 6,1 <P* = lim P[cS|R’(n), fo]'
n— ® ~ n—-ow

Proof: The equality is established in [2] and the inequality below.

Clearly
/ -
(3.3) P[CS|R’(n), 611 S PITy -T, ; . 2 -c,[8]
It follows as in the proof of Lemma 1 that wn =n (Tkn - Tk_l,n)

has a limiting normal distribution with zero mean and variance

13
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UE(H) = 2k2[fH2dF -(JH dF)2},
where

(3.4) H(x) = k[ (k - 2)F(x + 1) + 2F(x)].
Thus by (3.1) and (3.3)

Lim PICS|R(n), 6] = @(k(12) “FAx/o(R)). -

n—ow

It follows from (2.20) that for any € > O there exists 4 < P <l

such that
2,-1
A* = A(P%; k, 1) < (1 + €)22077(P¥).
Thus the ccunterexample will be proved if it can be shown that
(3.5) A(m) > k°/6.
From (3.4)
(3.6) o2(H)/2 = 4/12 + b(k-2)Cov(RX), F(X+1)) + (k - 2)°Var (F(X + 1)),

where X has cdf F.

Now let
(3.7) F(x) = }1/2 + x/2b b<x<0
1/2 0<x<1
1/2 + (x - 1)/2a 1<x<1l+a,

where 0 <8 <1<«<b are constants to be determined below.

14
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Thus,
F(x + 1) =<r1/2 + (x + 1)/2b -(b+1)<x<g-1
1/2 -1<x<0
1/2 + x/2a 0<x<a
_} a <x

or, except for a set having zero F(x)-measure,

(3.8) F(x + 1) ={ F(x) + 1/2b 0 < F(x) <1/2 - 1/2p
1/2 1/2 - 1/2b < F(x) < 1/2
1 1/2 < F(x) < 1.

If X has cdf F then F(X) is a uniform random variable and

it follows from (3.6) and (3.8) that

(3.9) o®(8)/2 = k¥/12 + (1% -10)(k - 2)A%2 - B(3k°- Bk + 4)/8
+ 38k - 2)%/8 + B2~ 1)/6
- Bt - 2)2

vhere B = (2b)™). It is clear that for sufficiently small B

(large b) the right side of (3.9) can be made larger than k2/12 80

that (3.5) is satisfied and Counterexample 3 is proved.

4. Concluding remark.

Procedures R(n) and R’(n) are special cases of the scores
procedures proposed in [2], [4], [6], [7] and [8). The second
counterexample probably works for any scores procedure when F
(instead of being logistic) is the cdf against which the scores are

locally most powerful.

15.
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ich have been claimed elsewhere to be solutions to these problems. We show by
ans of specific examples that these procedures are in fact not solutions and should
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